Hypertension – Pathophysiology and Treatment Concept Map

Hypertension - Pathophysiology and Treatment Concept Map
Hypertension - Pathophysiology and Treatment Concept Map

Map Explanation:

This map shows you the links between the mechanisms of hypertension and how antihypertensive agents work.   Blood pressure is a product of of cardiac output and total peripheral vascular resistance, so the increase in one or both of these factors leads to hypertension.   Blood pressure is controlled by neural and humoral systems which include:

  • Renin-Angiotensin Aldosterone System,
  •  Increased sympathetic discharge,
  •  Increased sodium  and chloride concentrations in extracellular fluid volume, and
  •  Vasodilators deficiency

Hypertension pathophysiology

This part of the map explains each of hypertension contributing factors including the inter-related links between them.

Antihypertensive agents are stated around the pathophysiology part to illustrate the effect or the site of action of each agent on the pathophysiology using dotted lines.

Hypertension pathophysiology part of the map starts with Renin Angiotensin System (RAS) that ends by the production of angiotensin II which is a vasoconstrictor that stimulates the autonomic centers in the brain resulting in increased sympathetic discharge.  It also stimulates aldosterone and antidiuretic hormone.  Antidiuretic hormone is also stimulated by increased sodium and chloride concentration in the extracellular fluid, causing sodium and water retention and increase in peripheral vascular resistance.

The increase in the sympathetic discharge increases heart rate and contractility, so increasing cardiac output.  Norepinephrine causes vasoconstriction and induces kidney sodium retention resulting in an increase in peripheral vascular resistance.

Another factor for the development of hypertension is the deficiency in the synthesis of vasodilators as nitric oxide and prostacyclin and the degradation of bradykinin which is also a vasodilator, in the face of normal release of endothelin and the increased release of Angiotensin I and Angiotensin II which are vasoconstrictors.

Pharmacological treatment of hypertension

It includes the following agents:

ACE inhibitors mechanism of action includes inhibiting Angiotensin Converting Enzyme (ACE), blocking the degradation of bradykinin and stimulating the synthesis of some vasodilators, so decreasing tissue peripheral resistance.

Angiotensin II Receptor Blockers (ARB) block angiotensin 2 receptors.

The mechanism of action of diuretics includes decreasing plasma and stroke volume and so decreasing blood volume which in turn decreases cardiac output.  Thiazide diuretics also decrease peripheral vascular resistance by mobilizing Na & water from arteriolar walls and by acting as direct vasodilators on blood vessels.

Aldosterone antagonists are potassium sparing diuretics that competitively bind to aldosterone receptors and so decreasing both cardiac output and peripheral vascular resistance.

Direct vasodilators work directly on blood vessels.

Dihydropyridine calcium channel blockers block voltage-gated calcium channels (VGCC) in blood vessels causing vasodilatation.  While, nondihydropyridine calcium channel blockers block voltage-gated calcium channels (VGCC) in cardiac muscles, so they act as negative chronotropic, negative dromotropic and negative inotropic agents and cause decrease in cardiac output.

Sympathetic depressants act on different sites to decrease the sympathetic discharge.  Among the commonly used sympathetic depressants are beta blockers.  Beta blockers also inhibit renin release so decrease tissue peripheral resistance in addition to their negative inotropic and negative chronotropic affects that decrease cardiac output.

Due to the large size of the map, you might find it difficult for printing or studying from the computer screen. This is why the printable version of (Hypertension – Pathophysiology and Treatment Concept Map) is released. Now, you will be able to print the map on seven A4 papers and study it as one unit. Get Hypertension – Pathophysiology and Treatment Concept Map – PRINTABLE VERSION.
If you live in Egypt, to get this map, please contact me on mahatef@zoomout-ph.com for more suitable payment methods.

This was an explanation for hypertension pathophysiology linked by mechanisms of action of antihypertensive agents and effects on cardiac output and/or peripheral vascular resistance and consequently blood pressure.  I hope you gain value from this map, and I look forward to hearing your feedback.


3 thoughts on “Hypertension – Pathophysiology and Treatment Concept Map

  1. Hello there, You’ve done an excellent job. I’ll definitely digg it and personally recommend to my friends. I’m confident they will be benefited from this site.

  2. Impedance cardiography (often related as ICG or TEB) is a method that measures changes in impedance across the thoracic region over the cardiac cycle. Lower impedance indicates greater the intrathoracic fluid volume and blood flow. Therefore, by synchronizing fluid volume changes with heartbeat, the change in impedance can be used to calculate stroke volume, cardiac output, and systemic vascular resistance.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s